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The Executive Summary
This document provides a comprehensive analysis of Artifi cial Intelligence (AI) and its signifi cant impact on the 
life sciences sector. It begins with a historical overview, tracing the development of AI from early neural networks 
to today’s sophisticated machine learning and natural language processing technologies.
This paper primarily concentrates on Generative AI, a notable branch of AI distinguished by its capability 
to create diverse content including text, images, and intricate data interpretations from minimal user input. 
We conduct a comprehensive exploration of Generative AI, examining its evolution, current state, and future 
prospects. This includes an assessment of its extensive potential as well as the challenges it encounters.
AI has practical applications across various industries, particularly its transformative eff ects in healthcare and 
life sciences. The paper demonstrates how AI is revolutionizing personalized medicine and enhancing pharma-
covigilance through literature monitoring, underscoring its diverse and comprehensive applications. We present 
real-world examples that show AI’s role in improving effi  ciency and driving innovation in these essential sectors.
Designed to serve as both an informative resource and a strategic guide, this document assists professionals in 
navigating the evolving AI landscape within the life sciences fi eld. It refl ects our commitment to staying at the fore-
front of technological advancements, ensuring our clients and partners can fully leverage AI’s capabilities.
At Ennov, we are confi dent in AI’s ability to reshape the future of life sciences. Through this white paper, we invite 
you to join us in exploring and contributing to this exciting era of discovery and innovation.



Early Neural Networks 
The inception of neural networks can be traced back to 1951, 
marked by the creation of a device using 3,000 vacuum tubes to 
simulate 40 neurons. This was followed by the development of  
the Perceptron in 1955, the first artificial neural network (ANN) 
with learning capabilities, and in 1969, the introduction of the 
backpropagation algorithm, enabling multi-layer neural  
networks to learn. 
The 1980s saw significant advancements with the introduction  
of Convolutional Neural Networks (CNNs), enhancing image 
recognition, and Recurrent Neural Networks (RNNs), improv-
ing handwriting and speech recognition capabilities. However, 
limitations in computational power and a lack of understanding 
regarding the limitations of gradient learning in multilayer neural 
networks meant that deep learning’s potential could not be fully 
explored until the 2000s. 

Symbolic AI  
The domain of symbolic AI saw its first major achievement with the development of a checkers-playing program in 
1952, also notable for being the first learning-capable program. The invention of the LISP programming language in 
1958 simplified the creation of symbolic AI systems. By 1965, the development of the first Expert System introduced 
formal reasoning capabilities using Boolean rules and inference, though by the 1980s, the limitations of expert sys-
tems in addressing real-world problems became apparent, contributing to the onset of the so-called “AI Winter.” 

Symbolic Computation 
Symbolic computation, or computer algebra, involves the representation and automatic manipulation of math-
ematical expressions to solve problems. Although initial implementations began in the 1960s, it took decades 
for this approach to mature into the powerful tool it is today. Currently, the integration of generative AI with 
symbolic computation represents a promising research direction. 

Probabilistic and Fuzzy AI  
The introduction of Fuzzy Logic in 1973 facilitated the modeling of partially true concepts and the mimicry 
of human reasoning on imprecise notions. The development of pattern recognition and fuzzy systems in the 
following decades allowed for the incorporation of human expertise into a wide array of systems, from simple 
to complex. 
The foundation for probabilistic reasoning was laid in 1763 by Thomas Bayes, whose theorem supports rea-
soning based on the probabilities of events. This theoretical groundwork led to the development of Bayesian 
Networks in 1988, significantly enhancing the capability to model uncertainty and informed decision-making 
in AI systems. 

AI’s Slow Coming of Age   
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1951 - The first artificial neural network  
called SNARC



 The Rise of Machine Learning  
In the 1980s and 1990s, machine learning heralded a sig-
nificant shift in AI, leading to the development of diverse 
methodologies that underpin the three primary types of 
machine learning recognized today: 

 › Supervised learning uses a training dataset with 
predefined outputs to guide the learning process. 

 › Unsupervised learning identifies patterns in  
data without predefined outputs, revealing the 
data’s inherent structure. 

 › Reinforcement learning operates through peri-
odic feedback, adjusting the system’s outputs  
based on their accuracy. 

This period saw the creation of various learning methods, 
including regression methods (focusing on statistical 
relationships), stochastic gradient descent (notably back-
propagation for ANNs), and similarity-based approaches 
like K-nearest neighbors. Additionally, ensemble learning 
emerged, enhancing predictions by really integrating 
multiple models, alongside probabilistic and heuristic 
learning (such as Bayesian methods, Gaussian processes, 
Markov models, Monte Carlo simulations, simulated  
annealing, and genetic algorithms). Dimensionality 
reduction and feature engineering techniques were 
developed to simplify complex problems by altering 
the representation of data in the vector space, making  
it easier to analyze. 

Advancements in Natural  
Language Processing (NLP)  
Over the years, NLP has evolved significantly, leveraging 
advances in AI and machine learning: 

 › NLP was invented in the 1960s. It was rule-based 
and could only handle specific types of inputs  

 › The 1980s introduced Generative Grammar, facili-
tating complex NLP tasks like language translation 
through formal syntax and grammar analysis. 

 › By the 1990s and 2000s, statistical machine learning 
approaches, such as Conditional Random Fields 
(CRF), advanced text parsing, speech recognition, 
and translation capabilities. 

 › The late 2010s saw the advent of Large Language 
Models (LLMs), which significantly enhanced 
general-purpose NLP performance across 
various tasks. 

Today, “traditional” NLP algorithms and LLMs are both 
used. Each approach has its specific strengths: 

 › Traditional NLP is very cost efficient at executing 
many specific natural language tasks. This type of 
algorithm can be executed on standard hardware 
and easily deployed.  

 › LLMs are better at many tasks, especially when text 
generation is involved. They nevertheless generally 
require deployment on dedicated GPUs or TPUs and 
are therefore more costly and complex to deploy. 
 

The First AI Surge 
The 2000s and 2010s have seen a quantum leap in AI’s 
capabilities, driven by key factors: 

 › Technological Breakthroughs: The advent of 
AI-dedicated GPUs and TPUs significantly boosted the 
computational power for training neural networks, 
facilitating the processing of extensive datasets. 

 › Data Revolution: The digital age has produced  
an abundance of data, crucial for training and  
refining AI models. 

 › Deep Learning Advancements: Innovations in 
neural network designs, especially the introduction 
of LSTM (long short-term memory) algorithms by 
Sepp Hochreiter in 1997, overcame previous limita-

tions of backpropagation in multi-layer networks. 
This enabled “deep” learning through networks with 
many neuron layers, each extracting progressively 
higher-level data features.   

The evolution of efficient deep learning techniques and neural networks became the most significant and rap-
idly industrialized AI segment during this period. Large neural networks offered strategic advantages to major 
corporations, especially tech giants, enabling the widespread deployment of sophisticated pattern recognition 
and automatic translation services. 
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1988
Bayesian Networks invented 
by Judea Pearl enable to do 

probabilistic reasoning 

   AI EVOLUTION TIMELINE

OpenAI fi rst releases 
ChatGPT on November 2022, 

triggering a mass adoption 
of generative AI 

2022

Mass scale industrial 
applications of deep learning 

for speech and image 
recognition 

2010s

Nvidia increases deep 
learning speed by 100 
times with GPUs for 
deep learning 

2009

The modern Transformer 
algorithm is introduced by 
Ashish Vaswani et al., 
starting the LLM revolution 

2017

Conditional Random Fields (CRFs) 
by Laff erty et al. enable advances 

in text parsing, speech recognition 
and translation  

2001

The LSTM (long short-term 
memory) algorithm of Sepp 
Hochreiter enables “very deep 
learning” of Neural Networks 

1997

1982

John Hopfi eld’s Recurrent 
Neural Network improves 
speech recognition and 
language processing 

Lotfi  Zadeh invents Fuzzy Logic, 
enabling to reason on 

unprecise notions 
1973

The backpropagation algorithm invented 
by Seppo Linnainmaa enables deep
learning of Neural Networks 

1970

First Expert System developed by 
Edward Feigenbaum et al. 1965

First Neural network 
invented by Marvin Minsky 

& Dean Edmunds
1951

1957

Noam Chomsky’s  
book “Syntactic Structures” 
introduces Generative 
Grammar 



Generative AI: The Breakthrough That Changes Everything 
Generative AI represents a monumental leap forward in artificial intelligence, characterized by neural networks 
known as Large Language Models (LLMs) that are adept at producing a diverse range of content, including text, 
images, code, and videos, in response to user-provided text prompts. 
Historically, techniques such as genetic algorithms and L-systems were employed in the 1980s and 1990s to gen-
erate content inspired by natural processes. However, the advent of modern LLMs has ushered in an era where 
content can be generated through advanced neural network architectures based on simple user prompts: 

 › Mixture of Experts (MoE): Introduced in 1991,  
this architecture utilizes multiple models in tandem.  
In 2024, it underpins promising LLMs like Mixtral, 
showcasing its enduring relevance and utility. 

 › Diffusion Algorithms: Since their introduction in 
2015, these algorithms have revolutionized image 
generation, iteratively applying noise and denoising 
techniques until the desired image emerges. 

 › The Transformer Algorithm: Proposed in 2017,  
this has become the cornerstone of contemporary 
LLMs used for generating text or code, exemplified  
by OpenAI’s GPT, Meta’s LLaMa, and Google’s Gemini 
(previously Bard). It’s core mechanism, the Attention 
Mechanism, enables the neural network to con-

textualize words effectively, predicting subsequent 
tokens with remarkable accuracy. 

Simple as it may seem, this generic approach has proved to deliver “Emerging Capabilities” every time the network is scaled 
(adding more neurons and layers). For example, much to the surprise of early users, Transformer-based LLMs proved to be 
able to translate texts from one language to another once scaled, although they were never meant to originally. 
These emerging capabilities are numerous, making LLMs extremely flexible. While “traditional NLP” requires the use of mul-
tiple algorithms that must be tuned by experts to achieve a specific goal, generative AI has completely changed the game 
by providing a universal approach that can achieve countless goals, according to its user’s need. 
Other factors make this universal capability extremely useful in practice: 

 › Ease of Use: LLMs simplify interaction, requiring only 
detailed text prompts from users to deliver results. No 
longer are “PhDs in AI” required to successfully use 
AI. This leads to mass adoption of the technology and 
completely changes AI from an elitist technology to a 
grassroots movement – everybody in the company is 
now a potential user capable of crafting an LLM to suit 
his or her particular need. 

 › Versatility in Content Creation: Addressing a 
common need, LLMs offer flexible solutions for gen-

erating a wide array of content types, from code and 
documents to images and summaries. 

 › Comprehensive Capabilities: LLMs excel in extract-
ing information, generating diverse texts, answering 
questions, summarizing, translating, enhancing text 
relevance, emotional analysis, error detection, conver-
sation, logical reasoning, and integrating various data 
types for comprehensive analyses. 

 › Adaptability and Customization: Through tech-

niques ranging from Retrieval Augmented Generation 
(RAG) to Neural Network Model Fine-Tuning, LLMs can 
be tailored to specific domain knowledge, enhancing 
their utility in specialized fields. 

 › Multimodality: Evolving beyond text, modern LLMs 
interpret and generate multifaceted outputs includ-

ing charts, graphics, and tables, broadening their 
applicability. 

 › Extendibility and Integration: Advanced LLMs can 
identify their limitations and delegate specific tasks to 
specialized applications via APIs, effectively becoming 
central orchestrators of a wide range of applications. 
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Despite its transformative potential, generative AI faces inherent limitations. Yet, these constraints do not signal an 
imminent “AI Winter”; instead, they highlight areas for ongoing innovation and adaptation. Here’s why these limita-
tions are unlikely to derail the progress of generative AI: 

Limited Creativity: Transformer Models’ creativity is con-
strained by the data they were trained on and their training 
principle which is to predict the most probable words that 
will complete an existing text. They are “advanced parrots” 
rather than true creators.  

We do not need LLMs to be AGIs (Artificial General Intelli-
gence that could learn to accomplish any intellectual task that 
human beings can perform) for them to be immensely useful. 
There are so many tasks that we can automate or improve 
and that do not require a very high level of creativity.   

Data Dependence: LLMs rely on the data they were exposed 
to during training. If the training data is biased or incomplete, 
the generated output may reflect those limitations. 

This is why enterprises in various industries are learning how 
to create their own LLMs or fine-tune general-purpose LLMs. 
There will likely not be a “One LLM to rule them all” but 
rather Multiple LLMs dedicated to specific industries. 

Ethical Concerns: Generative AI can inadvertently produce 
harmful, offensive, or biased content. Ensuring ethical guide-
lines during training and deployment is crucial. 

Modern LLMs such as ChatGPT include a phase of  
fine-tuning of their algorithm (based on reinforcement 
learning), where humans qualify the quality of the responses 
that the LLM provides. Meeting ethical guidelines is indeed 
included from the start in their design.  

Computational Demands: Training and running generative 
models are computationally intensive. Large-scale models re-
quire substantial resources, limiting accessibility for everyone. 

GPUs and TPUs are progressing very fast to alleviate that 
constraint. Besides, some approaches such as the Mixture 
of Experts enable to create LLMs that are ten times smaller 
while retaining the same capabilities as larger models.   

Lack of Explanation: Understanding why a generative 
model makes specific decisions can be challenging. Inter-
pretability remains an ongoing research area. 

LLMs can provide explanations about their decisions when 
they are asked to do so. They are also capable of reasoning 
step by step when prompted to do so, which also provides 
intermediary results along their decision process.  

Over-Reliance: Dependence on a few large proprietary 
LLMs is a concern as the largest LLMs are built by a few 
technology companies that can afford the vast resources 
required to train them.  

Open-source LLMs are progressing very fast and trail propri-
etary LLMs by about a year only. With open-source LLMs and 
proprietary ones, companies can fine-tune these models on 
their own data and build a specific version for their own use.  

Overfitting: Similar to other machine learning models, genera-
tive AI is prone to overfitting, meaning it may perform well on its 
training data but poorly on unseen data. This overfitting can lead 
to two significant issues: the inadvertent exposure of confidential 
information contained within the training data and the emer -
gence of novel security threats that are challenging to mitigate. 

Avoiding security risks is essential for companies, which is 
why they are advised not to exchange confidential informa-
tion with “public” LLMs, but rather deploy their own LMM in-
stances. The study of the new types of attacks made possible 
with LLMs is a booming domain – we believe that over time 
security best practices will emerge to alleviate that risk.  

Uncertainty Handling: Generative models struggle with 
quantifying uncertainty. They often produce confident but 
incorrect outputs. 

LLMs generally have a parameter that users can set that 
makes the LLM either more precise or more creative but also 
likely to produce incorrect results. Another approach that 
works well is to ask the LLM to verify that the answer that it 
has just provided is correct. Managing uncertainty is certain-
ly a challenge but can be done with the right approach.  

LIMITATION                                                       MITIGATION
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Given these considerations, it’s evident that generative AI is poised to significantly transform various industries. Busi-
nesses that delay in adopting its capabilities may soon find themselves at a competitive disadvantage. This technolog-
ical advancement is also likely to induce shifts within the workforce and employment landscapes, favoring those who 
adapt to and integrate new AI technologies into their skill sets and operational strategies. 

         NLP+MACHINE LEARNING                                GENERATIVE AI (LLMS)     

Multiple models & algorithms that are  
each good at a specific thing 

Universal model: can be used to do  
multiple things  
Emerging capabilities are discovered  
every time LLMs are scaled   
Multimodal: handles text, image, video… 

PhD required to configure the algorithms 
optimally 

Writing a prompt can be learned by  
anyone  

Relatively mature algorithms that have  
been developed in the 80s, 90s, 2000s… 

Fast-moving technology: new algorithms +  
NVIDIA plans to multiply by 1000 the power 
of its AI chips in 5 years  

Generating content is extremely difficult  
(better at recognition, extraction,  
classification) 

Generating content is very easy  
(summarizing, translating, creating  
new content…)
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Generative AI Is a Game Changer 
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Implications for Every Industry 
The vast amounts of unstructured data—documents and information—present in enterprises are set to become 
a key asset for generating business value, thanks to Large Language Models (LLMs). Unlike earlier AI initiatives 
that demanded extensive structured data, often at high collection costs, generative AI can unlock many practi-
cal applications across all sectors. 
Examples include: 

 › Assisting programmers in writing, proofreading,  
and translating code between languages. 

 › Streamlining the production of detailed texts,  
charts, graphics, and reports that traditionally  
require considerable effort. 

 › Enhancing risk detection by analyzing varied  
information types. 

 › Facilitating predictions based on  
comprehensive data sets.  

 

 › Automating the generation of structured  
documents like contracts, orders, and invoices. 

 › Extracting relevant information from diverse  
document types, regardless of their format. 

 › Improving customer support and assistance through 
the use of historical cases and knowledge bases. 

 › Personalizing interactions with clients on a large scale. 
 › Analyzing extensive unstructured data sets to  

uncover valuable insights. 

Industries must proactively explore and test how generative AI can be applied to foster productivity improvements, 
cost reductions, or novel client engagement methods. 
Moreover, the long-term impact of generative AI is likely to bring about significant disruption across various 
sectors. Innovative business models that were previously unfeasible are beginning to emerge, as seen in nich-
es like stock image photography. In this domain, images are increasingly generated by AI based on prompts, 
reducing costs and reliance on traditional photography. This trend towards AI-generated content is expanding, 
with users becoming adept at creating custom images for their needs. Companies facing the highest risk of 
disruption by these shifts should urgently devise contingency plans to address the forthcoming challenges 
and opportunities. 

    |  AI and Its Impact on Life Sciences7
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Implications for Healthcare and Life Sciences 

1. Addressing Physician Shortages: AI has the 
potential to mitigate the shortage of trained med-

ical professionals, a pressing issue in both aging 
societies with a growing patient base and devel-
oping regions lacking sufficient healthcare workers 
and training facilities. AI can offer support through: 
 › AI-Assisted Diagnostics and Prescriptions: 

Technologies such as AI-assisted diagnostic 
imaging in radiology can significantly reduce 
radiologists’ workloads and decrease error rates. 
Moreover, AI’s applications span across various 
specialties including dermatology, ophthalmol-
ogy, and pathology, with algorithms already 
outperforming humans in detecting conditions 
like skin cancer and diabetic retinopathy. 

 › AI-Based Diagnostics and Prescriptions: 

In locations where medical professionals are 
scarce, AI can provide essential diagnostic and 
prescription services, bridging the gap in health-

care access.  

2. Enhancing Healthcare Quality: AI contributes to 
healthcare quality improvements in several ways: 
 › Reliable Diagnostics: AI’s precision in diag-

nostics, whether assisted or fully automated, 
enhances the accuracy of patient assessments. 

 › Personalized Treatments: By analyzing compre-

hensive patient data—including environmental, 

lifestyle, genomic, and real-world information—
AI enables tailored treatment plans. Technologies 
like RNNs and LSTMs are instrumental in parsing 
complex sequence data from genomics and 
patient records. 

 › Risk Assessment: AI tools can identify patients 
at high risk for conditions like cancer early on, 
recommending preventative measures or screen-

ings accordingly. 

3. Controlling Healthcare Costs: AI can help 
manage escalating healthcare expenses through: 
 › Operational Efficiency: Automating administra-

tive duties and optimizing resource distribution, 
such as bed allocation and staff scheduling, can 
alleviate the administrative load on healthcare 
professionals. 

 › Telemedicine Advancements: AI enhances 
telemedicine by enabling intelligent monitoring 
for patients with chronic conditions, reducing the 
need for in-person visits. 

 › Empowering Patients: AI-powered health 
applications allow individuals to conduct 
self-assessments and gain insights into pre-

ventive care, fostering a proactive health 
management approach and potentially reducing 
healthcare costs. 

At Ennov, we of course experiment using new AI technologies internally to improve how we work (for example 
how AI can help us improve product development or customer support). 
But we are even more involved in how we can help our Healthcare and Life Science clients apply AI to make their 
business more efficient and agile. Generative AI has opened a new frontier in healthcare and life sciences, with 
many potential applications.   

Transformative Impact on Healthcare  
AI’s potential for healthcare is truly transformative, as it addresses three critical challenges that healthcare 
faces today:  

    |  AI and Its Impact on Life Sciences9



While this overview is not exhaustive, it underscores the significant promise of generative AI in healthcare, both 
now and in the future. The technology’s capacity to improve access, quality, and affordability in healthcare 
positions it as a pivotal tool in transforming the industry.  

Use Cases 

10

Personalized medicine: A 45-year-old wom-

an is diagnosed with TNBC, a type of breast 
cancer usually aggressive and hard to treat. 
Taking into account that she has a mutation in 
the BRCA gene which increases breast cancer 
risk, her high level of immune cells in the tu-

mor, her history of benign breast disease, and 
her history of hypertension and diabetes, an 
AI system proposes a personalized treatment 
plan as well as lifestyle recommendations that 
will improve her chances of curing her cancer, 
prevent recurrence and ensure less side effects 
from the therapy. 

Literature monitoring for pharmacovigilance: 

Using a generative AI-enabled software, a  
mid-size pharmaceutical company regularly 
scans the scientific literature to find occurrenc-

es of the use of its drugs or of the same active 
ingredients that would require the creation of 
pharmacovigilance adverse event cases. The  
AI automatically scans thousands of new  
papers each week, surfaces the ones that are 
relevant, checks whether the case already exists, 
prepopulates metadata concerning the pro-
posed case, estimates the likelihood of causal 
relationship as well as the severity of the case.  

 › Step 1: AI proposes a personalized 
treatment plan

 › Step 1: Relevant scientific papers are  
identified  

 › Step 2: Treatment plan can be 
adjusted if needed 

 › Step 2: Causality and severity are  
estimated 

 › Step 3: Lifestyle changes reduce risk 
of recurrence 

 › Step 3: Case pre-populated with 
data & summary 

USE CASE 1                                                        USE CASE 2
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Broad Impact for Life Sciences 
AI and especially generative AI also has broad impacts for Life Sciences, spanning the whole spectrum of the 
drug development life cycle.  
It can accelerate drug discovery by improving drug target identification through biological and medical data 
analysis, accelerating drug screening by high-throughput screening of vast compound libraries for promising 
drug candidates, and enabling predictive modeling of the efficacy and safety of compounds, reducing the need 
for extensive laboratory tests. 
AI can also help optimize the design and management of clinical trials in various ways:  

 › Accelerate patient recruitment by analyzing large 
datasets to identify suitable trial participants. 

 › Optimize protocol design by analyzing past  
trials and outcomes, leading to more effective  
and efficient trials. 

 › Accelerate clinical study setup by accelerating  
the process of turning a study protocol into a  
workable EDC and eCRF. 

 › Continuously monitor and analyze trial data to 
identify trends and anomalies, or predict poten-

tial outcomes, ensuring better trial safety and 
data quality. 

 › Automate tedious tasks throughout the clinical trial 
process, for example in building an eTMF or gener-
ating study reports or clinical study narratives. 

The potential impact of AI on regulatory affairs is also sizable. This includes for example saving time on tedious, repeti-
tive processes, facilitating the creation of regulatory documents, helping assess the impact of regulatory changes: 

 › Data extraction techniques from existing texts such 
as narratives, notes and existing documents can 
facilitate the filling of the numerous metadata that 
are required to fill the forms used in many regulatory 
processes such as RIM/IDMP data entry for example. 

 › AI can facilitate regulatory intelligence by analyzing 
regulatory guidelines and documents submitted by 
competing vendors to authorities. 

AI can be used in pharmacovigilance and drug safety to accelerate case entry, data quality and signal detection: 

 › Data extraction from narratives can accelerate the 
tedious process of filling case entry forms or auto-

matically check if data from narratives match data 
filled in case entry forms. 

 › AI can accelerate literature monitoring and make it 
more reliable as well, by automatically identifying 

scientific papers worth being examined and 
extracting the key information necessary to fill the 
case if needed. 

 › Finally, generative AI can be used to improve signal 
detection, especially in cases when data are sparse 
and statistical approaches difficult to apply. 

 
In Medical Affairs, LLMs can facilitate the creation of many types of documents including: 

 › Regulatory Medical Writing: safety updates (auto-

mated literature review or safety reports drafting), 
clinical study reports (background, methods  
sections drafting). 

 › Scientific Communications: helping draft research 
papers, abstracts or posters 

 › Marketing Support: product monographs (draft-
ing initial content or summarizing literature 
and evidence). 

 › Medical Information Responses: automatically  
create FAQs or SRLs from product monograph,  
clinical trial data, and safety updates. 

11    |  AI and Its Impact on Life Sciences



Quality management is another domain where AI’s potential is sizable, for example for improving decision-making 
in QMS systems to enhance quality and improve compliance or enabling time savings in user training manage-
ment for example. 
Post-marketing activities are also areas where productivity gains can also be achieved by improving the  
management and the efficiency of marketing campaigns, as well as improving the productivity of time-intensive 
event management and transparency-related activities.  
Overall, AI can help make the whole drug lifecycle shorter and less time-intensive, improving costs and accelerat-
ing the drug’s time to market.     

Where Ennov Stands 
Ennov recognizes the significant value that both “traditional” NLP/machine learning and the more recent  
advancements in generative AI bring to regulated content management within the Life Sciences sector. 
To harness these technologies, we have incorporated a comprehensive AI module into our platform, which  
includes both traditional NLP and machine learning functionalities, alongside generative AI capabilities. 
This inclusive module is designed to bolster Ennov’s offerings on both a general and specific application basis: 

 › It enables advanced features such as intelligent 
NLP-based search and automated dashboard  
generation across all Ennov applications. 

 › It introduces new functionalities within each of 
Ennov’s primary areas of focus: regulatory affairs, 
pharmacovigilance, quality management, clinical 
studies, and event management. 

As AI technology continues to advance, Ennov is committed to ongoing enhancement of these features. Our goal 
is to ensure that healthcare and life science organizations utilizing the Ennov platform will consistently benefit from 
the cutting-edge developments in AI, particularly generative AI, to drive significant progress in their operations.  

12

More than 300 Life Sciences companies around the world  
are powered by Ennov 
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Glossary  
 
Artificial Neural Network (ANN): A computational  
model inspired by the human brain’s network of neu-
rons, capable of learning and making predictions or 
decisions.  
Backpropagation: An algorithm for training neural 
networks, involving the adjustment of weights in the 
network based on the error rate obtained in the  
previous epoch (iteration).  
Bayesian Networks: A probabilistic graphical model 
that represents a set of variables and their conditional 
dependencies via a directed acyclic graph (DAG).  
Convolutional Neural Network (CNN): A class of 
deep neural networks, most commonly applied to  
analyzing visual imagery, characterized by their con-
volutional layers that automatically and adaptively 
learn spatial hierarchies of features from input images.  
Directed Acyclic Graph (DAG): A conceptual  
representation of a series of activities, or, in other 
words, a mathematical abstraction of a data pipeline 
Deep Learning: A subset of machine learning  
involving neural networks with many layers, enabling 
the modeling of complex patterns and predictions.  
Expert System: A computer system that emulates 
the decision-making ability of a human expert, using 
predefined rules and knowledge.  
Fuzzy Logic: A form of many-valued logic that deals 
with approximate, rather than fixed and exact reason-
ing, mimicking the way humans make decisions.  
Generative AI: AI systems capable of generating  
new content, including text, images, and videos, 
based on the data they have been trained on.  
Large Language Models (LLMs): A type of  
generative AI model that processes and generates  
human-like text based on the input it receives.  
Long Short-Term Memory (LSTM): A special kind 
of recurrent neural network (RNN) capable of learning 
long-term dependencies, particularly useful in  
sequence prediction problems.  
Machine Learning: A subset of AI that provides 
systems the ability to automatically learn and improve 
from experience without being explicitly programmed.  

Mixture of Experts (MoE): An ensemble machine 
learning approach where multiple models (experts) 
are trained to solve the same problem and then  
combined in a way that leverages their strengths.  
Natural Language Processing (NLP): The ability of 
a computer program to understand human language 
as it is spoken and written, referred to as natural  
language.  
Perceptron: The simplest type of artificial neural net-
work, used in supervised learning for binary classifiers.  
Retrieval-Augmented Generation (RAG): The 
process of optimizing the output of a large language 
model. 
Recurrent Neural Network (RNN): A class of  
artificial neural networks where connections between  
nodes form a directed graph along a temporal  
sequence, allowing it to exhibit temporal dynamic 
behavior.  
Regression Methods: Statistical methods that allow 
for the modeling and analysis of relationships  
between variables.  
Reinforcement Learning: A type of machine  
learning where an agent learns to behave in an envi-
ronment by performing actions and seeing the results.  
Stochastic Gradient Descent: A method to find the 
minimum of a function by moving in the direction of 
the steepest decrease as defined by the gradient.  
Symbolic AI: An area of AI research that focuses  
on the manipulation of high-level, human-readable  
symbols, contrasting with approaches that work  
directly with raw data.  
Transformer Algorithm: A model architecture used 
primarily in the field of natural language processing 
(NLP) that relies on an attention mechanism to boost 
the speed and effectiveness of learning.  
Unsupervised Learning: A type of machine  
learning that looks for previously undetected patterns 
in a dataset without pre-existing labels.  
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